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ABSTRACT

Background and Objective: Published algorithms for classification of human sperm heads are based on
relatively small image databases that are not open to the public, and thus no direct comparison is available for
competing methods. We describe a gold-standard for morphological sperm analysis (SCIAN-MorphoSpermGS),
a dataset of sperm head images with expert-classification labels in one of the following classes: normal, tapered,
pyriform, small or amorphous. This gold-standard is for evaluating and comparing known techniques and future
improvements to present approaches for classification of human sperm heads for semen analysis. Although this
paper does not provide a computational tool for morphological sperm analysis, we present a set of experiments
for comparing sperm head description and classification common techniques. This classification base-line is
aimed to be used as a reference for future improvements to present approaches for human sperm head
classification.

Methods: The gold-standard provides a label for each sperm head, which is achieved by majority voting
among experts. The classification base-line compares four supervised learning methods (I — Nearest Neighbor,
naive Bayes, decision trees and Support Vector Machine (SVM)) and three shape-based descriptors (Hu
moments, Zernike moments and Fourier descriptors), reporting the accuracy and the true positive rate for each
experiment. We used Fleiss' Kappa Coefficient to evaluate the inter-expert agreement and Fisher's exact test for
inter-expert variability and statistical significant differences between descriptors and learning techniques.

Results: Our results confirm the high degree of inter-expert variability in the morphological sperm analysis.
Regarding the classification base line, we show that none of the standard descriptors or classification
approaches is best suitable for tackling the problem of sperm head classification. We discovered that the
correct classification rate was highly variable when trying to discriminate among non-normal sperm heads. By
using the Fourier descriptor and SVM, we achieved the best mean correct classification: only 49%.

Conclusions: We conclude that the SCIAN-MorphoSpermGS will provide a standard tool for evaluation of
characterization and classification approaches for human sperm heads. Indeed, there is a clear need for a
specific shape-based descriptor for human sperm heads and a specific classification approach to tackle the
problem of high variability within subcategories of abnormal sperm cells.

1. Introduction

generally have a lower fertilizing potential and may also have abnormal
DNA [2]. The categories of defects include head, neck and mid-piece,

Up to 15% of couples worldwide are affected by infertility [1]. In the
evaluation of the male factor, the first step consists of a semen analysis
according to standard criteria [2] that sets the basis for possible
medical treatment of the couple [3]. The morphology of the sperm
cells is useful to illustrate the potential fertility of a sample [3] and to
make a decision about infertility treatment [4].

Sperm morphology reflects different kinds of anomalies in human
semen samples. Depending on the anomalies, abnormal sperm cells

tail defects, as well as excess residual cytoplasm (see Fig. 1).

As a result of morphological semen analysis, all the sperm cells in
the semen sample are classified as normal or abnormal [5]. Many
studies have demonstrated the close relationship between fertility and
morphologically normal sperm [6—10]. The morphology is considered a
clinical tool dedicated to the fertility prognosis and serves as a way of
making decisions regarding the options of assisted reproduction
technologies [4]. In addition to a rigorous application of existing
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Fig. 1. Human sperm abnormalities. Image reproduced exactly as appears in [2], showing schematic drawings of some abnormal forms of human sperm.

guidelines and respect to high laboratory standards [11], emphasis on
identifying the categories of abnormal sperm heads, and morphological
patterns of sperm heads may have significant clinical utility when
deciding on an infertility treatment. For example, tapered heads may
be due to stress caused by a male urogenital tract infection [12]. There
is also clinical significance regarding the shape of sperm heads, and
each class is associated with different genetic and environmental
factors that impact clinical decisions pertaining to an infertility
treatment [12]. A complete analysis of normal and abnormal sperm
cells therefore turns out to be critical.

The inherent lack of objectivity in the evaluation of human sperm
morphology, the difficulty in standardizing, implementing and control-
ling manual methods, and the high degree of variation within and
between laboratories and technicians have fueled the computer-
assisted sperm morphology assessment [13]. Despite decades of
research on computer-assisted morphological sperm analysis
[14,15,3,16,17], there are still no standard ways of comparing the
results achieved with different methods. The results of sperm mor-
phology assessment methods are usually evaluated according to how
well they correlate with expert-generated classifications, though it
seems that each research group has its own dataset of images, staining
protocol, and evaluation metrics. Until today, no publications existed
that present results of test comparing approaches using the same data.

A ground-truth represents the absolute truth for a certain applica-
tion. For instance, in cancer detection from medical images, a
suspicious region is malignant or benign. The absolute truth (whether
there is cancer or not) can be obtained from biopsies and an
appropriate staining. These biopsy results constitute the ground-truth
for those medical images [18]. Unfortunately, for morphological
analysis of sperm cells, it is impossible to count with a ground-truth
because of the subjectivity of the task [19]. A valid alternative consists
of asking many experts in the field for their opinion about specific cases
to generate a gold-standard [20].

In this paper, we introduce and describe the SCIAN Gold-standard
for Morphological Sperm Analysis (SCIAN-MorphoSpermGS), a data-
set of sperm head images with expert-classification labels. The dataset
contains 1854 sperm head images obtained from six semen smears and
classified by three Chilean referent domain experts according to World
Health Organization (WHO) criteria [2], in one of the following classes:
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normal, tapered, pyriform, small and amorphous. This gold-standard is
aimed for use in evaluating and comparing not only known techniques,
but also future improvements to present approaches for classification
of human sperm heads for semen analysis. This is a very significant
contribution to the scientific community, because at present there is no
public gold-standard for human sperm head classification, so the few
existing methods cannot be properly evaluated and compared. To show
the usability of the proposed gold-standard, we conducted experiments
to define a five-class classification base-line.

This paper is organized as follows. In Section 2 we review the
research work in the area, justifying the need for a gold-standard for
classification of human sperm heads. Section 3 is devoted to describing
in detail the staining method, the features of the equipment we used to
capture the images and specific details about image sources, as well as
the description and analysis of our proposed gold-standard. In Section
4 we briefly discuss the common shape-based descriptors and super-
vised classification techniques used for the construction of the classi-
fication base-line, and we present the results of applying those
descriptors and classifiers to the SCIAN-MorphoSpermGS. The sum-
mary and conclusions can be found in Section 5.

2. Related work

The importance of having an image database containing ground-
truth labelings has been well-demonstrated in many applications of
computer vision: hand-writing recognition [21], face recognition [22],
indoor/outdoor scene classification [23] and mammal classification
[24]. As said before, a ground-truth represents the absolute truth for a
certain application that is not always available or costly. Unfortunately,
for many applications, especially in biomedicine, it is impossible to
have a ground-truth and a valid alternative consists of asking experts in
the field for their opinion about specific cases, in order to generate a
gold-standard [20]. The need for a gold-standard in biomedical
applications has been demostrated in PAP-smear classification [25],
human sperm segmentation [26], and sub-celullar structures classifica-
tion [27,28], among others.

No gold-standards are available for morphological sperm analysis.
Instead, several research groups have independently gathered sperm
smear images and run different sets of tests, with different performance
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Table 1
Summary of previous databases for morphological sperm analysis.
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Publication Number of classes Number of images or Image size Source
samples

Yi et al. 1998 [29] 4 300-360 640x480 Andrology Clinic, Seoul National University Hospital

Ramos et al. 2002 [30] 2 590 not reported  Division of Reproductive Medicine, University Medical Center St. Radboud
Nijmegen, The Netherlands

Soler et al. 2003 [13] 5 samples 262x144 Institute of Reproductive Medicine of the University, Miinster, Germany

Abbiramy et al. 2011 [31] 2 91 86x100 World Health Organization, 5th Laboratory Manual for the Examination and
Processing of Human Semen

Aksoy et al. 2012 [32] 67 samples not reported  Assisted Reproductive Techniques Unit, Faculty of Meram Medicine, University of

Lammers et al. 2014 [33] 250 samples

Ghasemian et al. 2015 [34] 2 1457 samples

not reported

576x764

Selcuk, Turkey

Andrology Laboratory, Service de Médecine et Biologie de la Reproduction,
University Hospital of Nantes, France

Infertility Therapy Center, Alzahra Educational and Remedial Center, Guilan, Iran

" Oriented to assessment of morphology parameters, not sperm classification.

measures. In Table 1, we list several sperm image datasets currently
used in publications on morphological sperm analysis.

3. Gold-standard
3.1. Sample preparation

Sperm samples were stained with a modified Hematoxylin/Eosin
procedure, in order to distinguish different parts of the sperm cell.
First, the sperm smear was fixed with ethanol 70% and immersed in
Harris' Hematoxylin for ten seconds for nuclear staining. To remove
residual staining, slides were washed with tap water for ten minutes.
Then, slides were immersed in 1% Eosin for two minutes to stain the
acrosome in a pink-orange color, mid-piece and tail. Finally, the
sample was washed with distilled water for one minute and air-dried.
This staining procedure allows samples to be used for more than one
year and is the most commonly used staining protocol in clinical
laboratories to enhance morphologic characteristics of sperm heads,
suggested by WHO [2].

3.2. Image acquisition

We use optical, bright field microscopy (Axiostar Plus, Carl Zeiss
Inc, Wetzlar, Germany), a 63x objective (oil, NA 1.4) with an adapter of
0.63x and a digital camera (scA780-54gc, Basler AG, Ahrensburg,
Germany) to acquire digital images.

Bright field microscopy was used, because it represents the most
common method to acquire images of sperm cells in sufficient detail. In
comparison to alternative techniques, bright field microscopy is cheap,
easy to use, and offers reproducible conditions for the observation of
sperm head morphology. The generation of the gold-standard under
standard conditions sets the basis for the direct comparison of different
algorithms that can improve the analysis of sperm characteristics in
clinical practice.

Besides bright field microscopy, there are alternative techniques
that enhance spermatozoa head structures, as Memmolo et al discussed
in [35]. Since unstained spermatozoa are essentially transparent under
a bright field microscope, alternative acquisition techniques such as
phase contrast microscopy [36], Differential Interference Contrast
(DIC) microscopy, also called Nomarski Interference Contrast (NIC),
or Digital Holographic (DH) microscopy can be used. Phase contrast
microscopy, DIC, and DH bear the advantage to enhance contrast of
internal head structures without altering the sample through staining,
labeling, or physical stress, and can therefore be used as in vivo
techniques for sperm analysis. [35] propose DH microscopy for
computer-assisted sperm head morphometry and compare two differ-
ent techniques to identify and measure the region of spermatozoon
heads. In Merola et al. [37], the authors suggest high-throughput
analysis of label-free microfluidic based cytofluorimeters for biovolume

estimation of bovine sperm morphology (length, width and height) and
prognostic examination.

3.3. Source of sperm smears

We obtained semen smears from volunteers between 28 and 35
years old at the Laboratory of Spermiogram, Program of Anatomy and
Developmental Biology (ICBM), Faculty of Medicine, University of
Chile, Santiago, Chile.

3.4. Gold-standard description

We collected semen smears containing 1872 sperm head images
that could be classified according to 11 head defects as WHO defines
[2]. We decided to build the gold-standard with 1854 observable and
evaluable sperm cells whose class was one of the following: Normal,
Tapered, Pyriform, Small, or Amorphous. Fig. 2 shows representative
sperm cells from each class. The manual classification process was
performed independently, per patient/smear, by three referent Chilean
experts with vast experience in morphological sperm analysis.

3.5. Analysis and discussion

A very important aspect in the analysis of the gold-standard is the
discussion of the inter-expert agreement distribution. As this gold-
standard was built with the cooperation of three experts, there are
three different agreement scenarios: one (basis set), two experts
(partial agreement - PA), or three experts agree on the same label for
a given sperm head (total agreement - TA). The first set contains 1854
sperm head labels, but a sperm head can be classified into three
different classes by the three different experts. The second set contains
1132 sperm heads, meaning that there are 1132 sperm heads with
partial agreement and without overlapping. The third set contains only
384 sperm heads, with total agreement between the three expert
technicians.

Table 2 shows the number of sperm cells per class for each
agreement scenario. Considering the manual classification agreement
by at least one, two, or three experts, the class Amorphous was the
largest class in all cases, concentrating over 68% in the total agreement
scenario (see Fig. 3). The class Tapered was the second largest class,
slightly decreasing assignment percentage as agreement among experts
increases and concentrating around a fifth of the samples. The
Pyriform and Small classes decreased their assignment percentage
while increasing the agreement among experts (from 188 to 7 and from
152 to 11 sperm cells, respectively). It is important to note that in the
case of class Pyriform, less than 2% of the samples had total agreement
of the experts (only 7 sperm cells). The only class that maintained its
assignment percentage, without statistical differences between agree-
ment scenarios, was the class Normal consisting of less than 10% of the
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Fig. 2. Classification gold-standard. Representative images of normal, tapered, pyriform, small and amorphous sperm cells that showed total agreement (TA) among experts (Image
size: 35x35 pixels =7x7 um).
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samples. Statistical differences between agreement scenarios in each
Table 2 class were evaluated by Z-test and considered significant at p < 0.05.
Inter-expert agreement. The underlying complexity of the sperm head classification task can
be studied by evaluating the degree of agreement between different
experts. Fig. 4 shows the inter-expert agreement per class. Considering

Agreement among Normal Tapered Pyriform Small Amorphous Total

experts
the number of heads that had been categorized as a certain class by at
At least one (Basis 175 420 188 152 919 1854 least one expert as the size of the basis set, Fig. 4 shows the percentage
set) of partial agreement and total agreement. There are some classes in
Partial agreement 100 228 76 72 656 1132 . . .
(PA) which it was really difficult to reach an agreement, for example, class
Total agreement 35 69 7 11 262 384 Pyriform. Only 40% of sperm heads that were classified as Pyriform by
(TA) at least one expert reached partial agreement and less than 4% that

reach total agreement. It seemed to be the most difficult class from
which to find agreement among experts. While the most morphologi-
cally ambiguous class in theory, Amorphous, turned out to be the class

B Normal M Tapered ™ Pyriform = Small B Amorphous

a) b) c)

Fig. 3. Inter-expert agreement. (a) Manual classification by at least one expert assigning a class label Amorphous amounts to 50% with similar presence of classes Normal, Pyriform
and Small (around 10%). (b) For partial agreement, the class Amorphous is the biggest class (almost 60%), while classes Tapered, Small and Pyriform sightly decrease. (¢) For total
agreement, the class Amorphous amounts almost 70%, while Pyriform covers almost 2%. The only class that maintains its assignment percentage is the class Normal, regardless if one
considers the label agreement of at least one, two, or three experts.

146



V. Chang et al.

80,
[ Partial agreement —

—_ [ ]Total agreement
S
= 60~
c
Q
£
[0
Q
2 40+
G
(0]
(0]
& 20-
j0)
=}

0

Normal Tapered Pyriform Small  Amorphous

Fig. 4. Partial and total inter-expert agreement. For each class, we show the
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Fig. 5. Inter-expert variability in five-class classification. For research purposes,
the expert classifies sperm heads in a number of classes (five in our case: Normal,
Tapered, Pyriform, Small and Amorphous). We show the number of sperm heads + SE
that belong to each class according to each of the three experts. Statistical differences
between experts in each class were evaluated by Fisher's exact test and considered
significant at p < 0.05 and indicated as A and B. For instance, for class Pyriform, the A in
Expertl and Expert3 means that there is a significant difference between those experts.
The expert manual classification shows a fair agreement among experts with Fleiss'
Kappa coefficient of 0.36(a = 0.05).

that had the greatest agreement among experts in both agreement
scenarios, partial and total agreement.

To demonstrate the subjectivity of morphological analysis and
dependence of the specialist who performs it, Fig. 5 shows inter-expert
variability per class. Pyriform and Small were the most defined classes
according to their morphological features, and both showed a high
degree of agreement between two of the three experts, while the
discrepancy with the third expert was really significant. In the case of
classes Normal and Tapered, a high degree of agreement was reached
between two technicians, whereas the discrepancy with the remaining
expert was very high in the case of class Tapered. Class Amorphous
showed a high degree of variability among all experts. In general, the
inter-expert variability analysis showed 60% of pairwise expert agree-
ment. We calculated the Fleiss' Kappa coefficient [38] as a way of
measuring the inter-expert agreement, and it showed a fair degree of
agreement, with a coefficient of 0.36(« = 0.05). Furthermore, assuming
that a semen analysis would provide the percentage of sperm heads in
each of the five selected classes, Table 3 shows how the seminogram

Table 3
Inter-expert variability (including standard error).
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would be quantified by each expert considered in this study, working
with the partial agreement data set.

4. Classification base-line
4.1. Feature extraction

Feature extraction is one of the basic steps in a classification
process and consists of quantifying properties of the objects derived
from the segmented regions of interest (ROI). For instance, an object
defined by a ROI can be described in terms of its shape, texture, and
color, among other features [39]. To describe the content of an image
semantically, shape-based descriptions have been proven to be much
more effective than other descriptions, such as those based on texture
or color [40]. However, when invariance with respect to the number of
possible transformations such as scaling, shifting, and rotation is
required, the construction of shape-based descriptors is more compli-
cated [41].

Shape-based descriptors are categorized as contour-based shape
descriptors and region-based shape descriptors. The contour-based
ones exploit information just at the boundary points focusing on
contour features, which is critical for human perception of shapes
[42]. Region-based shape descriptors are useful for describing non-
connected and disjointed ROIs because they combine information
across an entire object, so they can capture the interior content of an
object defined by a ROI [42]. The Fourier descriptor is an example of a
contour-based descriptor, while image moments are an example of a
region-based descriptor [43]. In this work, we conducted experiments
with three different shape-based descriptors: Hu moments [44],
Zernike moments [45] and Fourier descriptors [46].

4.2. Classification methods

Classification is the process that assigns objects to a set of classes.
There are many approaches used for classification purposes and are
categorized as supervised and unsupervised methods. Supervised
classification techniques involve the participation of an expert who is
responsible for teaching the classifier with examples. After training, the
classifier is expected to classify similar objects, that are previously
unseen, to the correct classes. A classification paradigm uses a set of
training examples of the form { (x, y,),...,(xu, 3,) } for the projection of
the function f{x). The values x are usually vectors of real or discrete
values of the form <x;;, x;o, ....x;,>. The values y are the expected
outputs for given x values, and usually obtained from a discrete set of
classes. Consequently, the task of a learning paradigm involves the
approximation of a function f{x) to produce a classifier. In this work, we
used four supervised classification techniques that have demonstrated
their suitability while coping with classification problems in different
domains: K — Nearest Neighbors [47], Naive-Bayes [48], Decision
Trees [49] and Support Vector Machines [50].

4.3. Performance measures

By taking advantage of having a classification gold-standard, it is
possible to evaluate the performance of a classification method against

Normal% Tapered% Pyriform% Small% Amorphous% Other%
Expertl 6.2+ 0.7 324+ 1.7 11.3 + 1.0 9.5+09 39.6 + 1.9 1.1 £03
Expert2 10.1 = 1.0 163 + 1.2 11.0 + 1.0 9.0 £09 52.6 + 2.1 1.1 £03
Expert3 11.1 + 1.0 14.6 = 1.1 1.7+04 23 +04 70.1 £ 2.5 02+ 0.1
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Table 4
Partial agreement dataset partition. PA — Dataset = PA — DS1 U PA — DS2 U PA — DS3.

Computers in Biology and Medicine 83 (2017) 143—-150

Table 6
Five-class base-line classification using Zernike moments. tpr stands for True Positive
Rate, acc stands for accuracy understood as the mean of tpr of classes Normal, Tapered,

PA-Dataset PA-DS1 PA-DS2 PA-DS3 Pyriform, Small and Amorphous.

Number of Normal sperm heads 100 60 20 20 Classifier tpr (N) tpr (T) tpr (P) tpr (S) tpr (A) acc
Number of Tapered sperm heads 228 137 46 45

Number of Pyriform sperm heads 76 45 15 16 1 - NN 0.34 0.47 0.36 0.62 0.20 0.40
Number of Small sperm heads 72 44 14 14 Bayes 0.92 0.37 0.15 0.73 0.07 0.45
Number of Amorphous sperm heads 656 394 131 131 Decision trees 0.40 0.44 0.37 0.61 0.25 0.41
Total number of sperm heads 1132 680 226 226 SVM 0.44 0.62 0.33 0.70 0.23 0.46

that gold-standard. To this end, it is important to realize that even Table 7

though there are a number of performance measures proposed in the
literature, the evaluation of a classification method can be measured by
using simple metrics such as accuracy and True Positive Rate (TPR) -
both of them based on the information provided by the confusion
matrix [51].

4.4. Dataset partition

For the experimental results that we show in this section, we used
the classification gold-standard introduced in Section 3.4. We con-
ducted experiments using the partial agreement dataset (PA-Dataset)
with 1132 sperm heads without overlapping and distributed in five
classes. Even though this is a very challenging problem, this paper does
not aim to provide a computational tool for morphological sperm
analysis but provides a public gold-standard to evaluate and compare
algorithms for classification of sperm heads. On that basis, we decided
to perform experiments using the PA-Dataset because of the reduced
size of data in the total agreement dataset.

The dataset was partitioned in three subsets, named Dataset 1
(DS1), Dataset 2 (DS2) and Dataset 3 (DS3), aiming to comprise a
training (60% of the whole dataset), validating (20%) and testing (20%)
dataset, respectively. In Table 4, the size and distribution of classes in
each partition are presented.

4.5. Experimental results

In our experiments, we measured the accuracy of sperm head
classification in five classes: Normal (N), Tapered (T), Pyriform (P),
Small (S) and Amorphous (A). We computed three different and
independent feature vectors using: 1) Hu moments, 2) Zernike
moments, and 3) Fourier descriptors. With respect to the classification
method, we used four common supervised learning techniques: 1) 1 —
NN, 2) naive Bayes, 3) decision trees, and 4) SVM. We used DS1 as the
training dataset and DS3 as the testing dataset. For training purposes,
we balanced training data by randomly taking the same number of
samples in each class. We did 100 runs for each feature extraction-
classification combination. Tables 5-7, show the accuracy per class by
using four supervised learning techniques and different shape-based
descriptors using the PA-Dataset.

As shown in Tables 5-7, the best accuracy in the five-class
classification scenario was achieved when using Fourier descriptors
with SVM. In this case, 49% was the achieved correct classification
regarding all classes, but achieving only 15% of correctly classified

Table 5

Five-class base-line classification using Hu moments. tpr stands for True Positive Rate,
acc stands for accuracy understood as the mean of tpr of classes Normal, Tapered,
Pyriform, Small and Amorphous.

Classifier tpr (N) tpr (T) tpr (P) tpr (S) tpr (A) acc

1 - NN 0.20 0.50 0.49 0.54 0.21 0.39
Bayes 0.01 0.29 0.32 0.92 0.15 0.33
Decision trees 0.33 0.52 0.53 0.35 0.22 0.39
SVM 1.00 0.70 0.47 0.04 0.10 0.46
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Five-class base-line classification using Fourier descriptors. tpr stands for True Positive
Rate, acc stands for accuracy understood as the mean of tpr of classes Normal, Tapered,
Pyriform, Small and Amorphous.

Classifier tpr (N) tpr (T) tpr (P) tpr (S) tpr (A) acc

1 - NN 0.50 0.49 0.36 0.44 0.20 0.40
Bayes 0.31 0.45 0.58 0.78 0.10 0.44
Decision trees 0.44 0.51 0.35 0.45 0.25 0.40
SVM 0.57 0.68 0.53 0.54 0.15 0.49

amorphous sperm heads: this demonstrates the difficulty of this task.
Analyzing the performance of the different descriptors evaluated in this
paper, we can conclude that neither descriptor nor classifier performs
as the best for all classes. The Hu moments descriptor achieved the
lowest correct classification which ranged from 33% to 46%, while
Zernike moments descriptor ranged from 40% to 46%, slightly out-
performed by Fourier descriptors, which achieved from 40% to 49%
correct classification. From Table 5, we see an obvious inverse behavior
of classes Normal and Small. While using Hu moments and SVM,
normal sperm heads could be correctly classified in 100% of cases,
small sperm heads only achieved 4% of correct classification. On the
other hand, while using Hu moments and the naive Bayes classifier,
92% of correct classification of small sperm heads was opposed by the
1% of correct classification of normal sperm heads. With respect to the
difficulty in each class, experimental results in the previous Tables
confirmed that the amorphous class was the most difficult to classify:
the classification accuracy ranged from 7% to 25%, without regarding
the descriptor or classifier used. In Fig. 6 we show a graphical
representation of the comparison of performance results of classifiers.

5. Summary and conclusions

To tackle the problem of lacking a gold-standard for evaluating
sperm head classification methods, we have introduced the SCIAN-
MorphoSpermGS. We built our gold-standard with images from
Chilean laboratories following a staining protocol with Hematoxylin/
Eosin. It was built with the cooperation of three experts and consisted
of 1854 sperm head images. Each sperm head was manually classified
by each expert in one of the following classes: Normal, Tapered,
Pyriform, Small or Amorphous. This gold-standard is for evaluating
and comparing not only known techniques, but also for future
improvements to present approaches for classification of human sperm
heads. The second contribution of this paper is a classification base-line
for comparison of classification results regarding four supervised
learning methods (1 — NN, naive Bayes, decision trees and SVM)
and three different shape-based descriptors (Hu moments, Zernike
moments and Fourier descriptors). This classification base-line is for
use as a reference for future improvements to present approaches for
human sperm head classification. This base-line demonstrates the
utility of the gold-standard by exploring the difference in classification
results between the most promising shape-based descriptors and
learning techniques, and shows that there is great room for improve-
ment in specific classification approaches for human sperm heads.

We conducted experiments that allow us to conclude that neither
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descriptors means that there is a significant difference between those descriptors.

standard descriptor nor classification approach is best suited to tackle
the problem of sperm head classification. In particular, we discovered
that the correct classification rate is highly variable when trying to
discriminate among abnormal sperm head. By using the Fourier
descriptor and SVM, we achieved the best mean rate: 49% of correct
classification. We conclude that there is a need for a specific shape-
based descriptor for human sperm heads and a specific classification
approach to tackle the problem of high variability within subcategories
of abnormal sperm cells. In this sense, it is only possible to understand
the differences between shape-based descriptors and classification
approaches by looking at the results of several experiments aimed to
test specific properties, as was one of the goals of this paper, along with
the introduction of the gold-standard. The SCIAN-MorphoSpermGS
provides a standard tool for this type of experimentation.

This paper suggests several directions for future research. First, the
gold-standard should be extended to consider a larger number of
domain experts and to take into account the expertise level of each
domain expert. We plan to use multi-label classification approaches for
consensus labeling from experts rather than simple majority voting.
Second, we plan to design a particular shape-based descriptor with this
application in mind, given that with three of the most promising shape-
based descriptors there was great difficulty in characterizing human
sperm heads towards an accurate morphological classification. Finally,
as four general supervised learning approaches showed the need for an
ad-hoc classification approach, we plan to explore the design and
development of a classification scheme for human sperm heads that
takes advantage of a combination of classifiers. We believe that the
gold-standard described in this paper provides a solid infrastructure
for continued research in these directions.
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